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Numerical computation of the field scattered from a body in two
dimensions due to an incident plane pressure pulse is considered. In
particular, we examine the process of inferring the scattered field due to
one incident pulse given the scattered field due to another incident
pulse. The objective is to develop an indirect method that avoids the
potentially expensive dircct solution of the problem. Our apgwoach is
basmd on a formula expiessing the scattered field as a convolution of
a kernel with the incident pulse profile. The most straightforward
generalization of this formula 1o the discrete version of the scatterer
probtem used in numerical computations does not allow the kernel to
be inferred from a single numerical experiment—a difficulty we call the
multi-source problem. Preprocessing the incident pulses using simple
interpolation formulas overcomes the multi-source problem giving an
exact algorithm for camputing the kernel. Selection of a sharp incident
pulse (the Kranecker pulse) for the primary numerical experiment
assurgs stability of this algorithm and permits extremely accurate
prediction of the scattered fields for secondary incident puises. < 1994
Academic Press, Inc.

L INTRODUCTION

We are concerned here with the scattering of a plane
pressure pulse w(y, v, )= U(x+¢) [rom an impencirable
target 5. The determination of the scaticred wave v(x, v, 1)
usually requires a numerical method, such as finite differen-
ces or time-dependent integral-equation techniques [, 27
The computational burden of such a method depends upon
the complexity of the target geometry and upon the high
[requency content of U. If this burden is significant, then
the determination of a sccond response 7 due to another
incident pulse #(a, y, 7} v n by the sime method
may be prohibitive, We present here a method of using the
results from the first simulation to indirectly and more
cfficiently determine those of the second.

The notion of determining the response of a lincar system,
for a given input, from its response to a delta function input
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forms the backbone of systems analysis. In the context of
scattering theory the analog is contained in the relationship

Fx, . 1) =J K(x ot —1)dlx, votyde (1)

—_r

which expresses the new scattered field 5 as the convolution
of its associated incident feld i and the target response., K,
to an incident plane delia function, This formula is solely a
consequence of the linearity of the governing wave equation
and boundary conditions, and Fouricr analysis. It is,
however, of limited value because it is difficult to numeri-
cally model an incident delta function and to compute its
response.

Another equivalent approach follows along the following
lines of reasoning, When a response is computed for a given
incident pulse, post processing by Fourier transforms will
yield the response of the target for a plane wave of a given
frequency. These responses can be weighted and resummed
to produce the scattered field for another incident pulse.
Applying standard transform techniques this procedure
yields the generalization of (1.1)

5(.\',_\‘,1)=jr gli—tYvix, )y, 1)t {1.2a)
_ o AR
,g(r)_znj TG (1.2b)

where A and A are the Fourier transforms of the incident
pulses u and #, respectively. The applicability of this method
profoundly depends upon the relationship between the
spectral densities of both incident pulses and may not be
robust depending on their behavior at infinity.

In this paper we shall present a new method which is
based upon a numerical analog of (1.1). Pivotat in the
method is our ability to obtain an approximation of the ker-
nel K which, as was mentioned above, is the response to an
incident delta plane wave. This is achieved by running one
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numerical experiment with an incident pulse given by a
linear approximation to a Kronecker delta function, ie., a
function that is unity at one grid point, zero elsewhere, and
linearly defined in between. Although this pulse is at best a
poor approximation to a delta function, the algorithm we
present shows that its response explicitly yields a numerical
approximation to K. This is then used in our discrete analog
of (1.1) to obtain numerical approximations to the scattered
field for any incident pulse. In particular when the incident
plane wave is a stepped time-harmonic plane wave, our
method yields an explicit expression for the scattered field,
which for large times goes to the time-harmonic response.
Thus, time-harmonic responses can be deduced in a much
more efficient manner than using FDTD codes. The latter
are essentially explicit iteration schemes which typically
begin with quiescent initial conditions and converge to the
time-harmonic response caused by an incident stepped
plane wave [3-51. We note, however, that our method is
faithful to the underlying finite-difference scheme. That is,
the errors present in the direct finite-difference simulation of
the scattering problem for a given incident pulse are exactly
reproduced by our method.

We shall now briefly outline the remainder of the paper.
In Section 2 we formulate the prototypical scattering
problem in which an incident plane puise impinges upon a
sound-soft target. We then analyze a general class of
numerical methods and derive, by first preconditioning the
incident pulse, a formula which is the discrete analog of the
continuous convolution result (1.1). A simpie algorithm is
then presented which gives a numerical approximation to §
in terms of v and U. In Section 3 we test out our method on
the scattering of waves from a sound-soft circular cylinder.

il. NUMERICAL CONSIDERATIONS

In this section we consider numerical implementation of
a secondary pulse prediction procedure. In the context of a
large class of numerical methods for computing the primary
scattered wave, we derive an exact procedure for computing
secondary scattered waves without reuse of the numerical
method. An explicit representation formula characterizing
the class of numerical methods is the foundation of our pro-
cedure. The most interesting aspect of the derivation is an
unexpected difficulty (here called the multi-source problem)
that arises from discretization. We overcome this problem
with a modification of the incident pulses that assures they
share certain properties. That is, the exact prediction of the
secondary scattered wave requires particular relationships
between the pulses. Fortunately, for many pairs of incident
puises and many numerical methods, the modification of
the pulses needed to produce the required relationships is
negligible compared to the errors inherent in the numerical
method.
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Problem Formulation

To illustrate our method we shall study a simple two-
dimensional acoustic scattering problem in which a plane
pulse w=U(x+1) insonifies a sound-soft target S and
scatters from it. We assume that the pulse first strikes the
target at 1 =0; ie, Ulx+1)=0 when <0 and (x, y)e 5.
Then letting D denote the exterior of the target, the
scattered wave o{x, v, £} is the solution of the exterior initial-
boundary value problem:

by =V 0, =0, (x, e D, t>0 (2.1a)

e(x, 3, 0)=0, {x,y)eD {2.1b)

v,(x, y,01=0, (x,vieD (2.1c}

v(x, y, 1)+ Ulx+1}Y=0, (x.)eS, >0 {2.1d)

where v is outgoing at infinity. The quantities in (2.1) are
dimensionless; the spatial variables have been scaled with
respect to a characteristic length, L, of the target, the time
with respect to L/e, where ¢ is the speed of sound in D, and
v and U with respect to the maximum of the incident
pressure pulse.

Although we will use an explicit second-order finite-
difference scheme to numerically approximate the solution
of (2.1), we will initially keep our discussion general enough
to cover other finite-difference schemes. Thus we consider a
class of finite-difference methods for solving (2.1) that
appraoximates the values of the scattered field at discrete
points (x;, ¥,)e D for equally spaced discrete times. We
write p{™ to denote the discrete approximation of the
scattered field for the mth time step at the position {x,, ;).
We denote grid points on the surface of the target by
(X,, Y,) (p=1, ., N). For numerical methods that respect
the linearity, time invariance, and causality of the con-
tinuous problem (2.1}, it can be shown (see Appendix A)
that the response v™' is exactly related to the incident wave
as sampled by the grid points on the target by

N m
pm= ¥ [z f}:}"”U(Xp+{h]} (22)
I

p=1 =0

where h is the time step. The outer sum expresses the
response at (x,, ¥;) as the superposition of the responses
from the effect of the incident wave through the various grid
points on the surface of the target; this is the discrete version
of Huyghens principle. The inner sum expresses each of
these contributions o the total response as a convolution of
the incident wave (as sampled at the surface grid point) with
a discrete transfer function. Alternatively, (2.2) can be
interpreted as a discrete version of a Green's function
representation of the scattered field where 277~ is the
Green’s function evaluated at the spatial points (X, ¥,),
{x;, ¥,) and the shifted temporal point.
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FIG. 2.1. Sampling on a staggered grid.

The Multi-source Problem

Equation {2.2) is an imperfect discrete analogue of (1.1).
This imperfection is the critical issue in the development of
a discrete formula for predicting the secondary scatter wave.
The root of the difference between the continuous and dis-
crete cases arises from the way the incident pulse is seen on
the surface of the target. In the continuous case, the incident
pulse seen at any two points on the surface of the target is
exactly the same except for a possible time delay. In the
discrete case, if the distance in the direction of travel of the
incident wave between the two points on the surface is not
a integral multiple of # then the discrete time series viewed
at the two point generally differs by more than just a time
delay as illustrated in Fig. 2.1, where the solid square
denotes the incident field at a spatial grid point and the
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open square at the other. That is, because the delay is not a
integral multiple of A, the two discrete time grids on which
the incident wave is sampled are staggered, and the sampled
discrete time series are potentially completely independent.
The potential degree of independence is illusirated in
Fig. 2.2, where the discrete time series sampled on the grid
marked by solid squares is increasing while that sampled on
the grid marked with outlined squared is decreasing. Thus,
where in (1.1) we have the continuous response to a single
continuous input, in (2.2) we have the discrete response to
N independent inputs.

For N > 1 a single numerical experiment is insufficient to
deduce how N independent inputs produce an output.
Based on (2.2) the secondary pulse prediction problem has
exactly this intractable structure. We call this difficulty the
multi-source problem. Its resolution is based on the observa-
tion that we are generally interested in the situation where
the time step # is chosen to adequately resolve the incident
pulise {(unlike in Fig. 2.2). In such cases, the observations on
a grid can be inferred to a high degree of accuracy from
those on a staggered grid through an interpolation formula.
Our solution to the multi-source problem is to modify the
incident pulse profiles so that the interpolation formula can
be used exactly. Of the many modifications of this kind
perhaps the simplest is to sample the continuous pulse
profile on a reference grid with spacing /# and to redefine the
values of the pulse profile through linear interpolation as
shown in Fig. 2.3,

To implement and analyze the interpolation formula, we
make use of two functions, The first M{x) is the smallest
integer such that x<hM(x); the second is defined by
H(x)= M(x)— x/h. Thus, M(x) gives the number of full
h-sized steps needed to cover the interval [0, x7, and H{(x)
gives the fraction of the last step that extends beyond x. We
define the standard discrete sample w,, = U(X, + m#h).
Assuming that (Xy, Y,) is the first discrete point on the

Sampled Volues

|

———— Continuous pulse profile
a———a Interpolated pulse profile

Pulse Profile

Time

FIG. 2.2. Independence of the staggered samples.
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target hit by the incident puise, we see that w,, =0 for m < 0.
A modified continuous pulse profile W(x) approximating
U(x)1s constructed from w,, using the interpolation formula

M(x)
W(X,+x)= 3 a,{H(x)) Wage) - j-

i=0

(2.3)

In the case of piecewise linear interpolation ay,(H)=1—H,
a,(HY=H,and a,(H)=0for =2,

Using (2.3) the modified incident pulse as sampled at
(X,, Y,) at the /th time step is

M(X,— Xo+ Ih)
WX, +h)= Y

Ji=0

a,(H(X,— X,+ Ih)

(2.42)

XKW g (X, — X+ ih) ~ j+

Because M(X,—Xo+h)=M(X,— Xo)+! and H(X,—
Xy +1hy= H{X,— X}, we can rewnite {2.4a) as

/!
WX, + i)=Y a,w,_, (2.4b)
j=0

where o, = @y x,_ xgy+ ,(H(X, — Xo}) when j+ M(X, — X,)
20 and a,;,=0 when j4+ M(X,— X} <0. Approximating
Ulx, + th) in (2.2) with W(x, + Ik} as given by {2.4b) yields
(after a considerable amount of algebra)

m N m—J
w=Y T Y A w,(25)
=0 p=1 (=0
Letting
N i
K¥F=3% Y A4, (2.6)

p=1Ii=0

we can rewrite (2.5) in a form completely analogous
to (1.1):

"

(Pr) {m—j)
v = Z Kr-m 4 Wj.

i
=0

This results shows that preconditioning the incident pulses
using (2.3} converts (2.2) into (2.6) which overcomes the
multi-source problem.

A Pracedure for Predicting the Secondary Scattered Wave

The significance of {2.6) is that the kernel K¥ can be
inferred from a single numerical experiment. Thus, the
response 54" to a secondary incident puise profile with
sampled values W, can be computed from (2.6) without
directly performing a second numerical experiment. In
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principle, the kernel K% may be deduced from any nonzero
incident pulse, but the required deconvolution process is in
many cases unstable when performed in finite-precision
arithmetic. Rather than consider the general case, we
present a particular incident pulse for which deduction of
the kernel from a numerical experiment is computationally
trivial and completely stable.

The incident wave is the “Kronecker” puilse U(x)=1 for
x=0 and 0 clsewhere, which neither represents a discrete
approximation to the delta function nor any smooth
function. Nonetheless when this pulse is preconditioned
by the linear interpolation scheme corresponding to (2.3}, it
can be used as the input for a finite-difference code and the
output v{™ can be unequivocally determined. Since the w;
corresponding to this pulse are given by w, = d,,, where J,
is the Kronecker delta function, it follows from (2.6) that the
kernel is explicitly given by

K =g, (2.7)

Qur procedure for deducing the scattered field 7 from a
second incident pulse I is now evident. The second pulse is
sampled to obtain W%, = U(X, +mh). Then, we insert these
values and the values for the kernel obtained from (2.7) into
(2.6) to obtain the explicit result

B = § o, (28)

i=0

Several factors affect the usefulness of (2.8) for a given
application. The most significant is that (2.8) gives the
response of the interpolated puise profile W rather than that
of the original pulse profile &/. When the interpolated pulse
is a poor approximation of the actual pulse (ie., the inter-
polation is too coarse), the prediction of (2.8) is unlikely to
be satisfactory. This limitation, however, is unlikely to cause
practical difficulties because the failure of the interpolated
pulse to approximate the actual pulse indicates that the
actual pulse is not adequately resolved on the given grid and
that the numerical method is unlikely to give meaningful
results.

Another factor affecting the choice between using (2.8) or
repreating the numerical experiment is the relative numeri-
cal efficiency of the methods. In a direct implementation of
(2.8), computation of the response value 3" for u=1, ..., m
requires O(m?) operations while repeating the numerical
experiment requires O(Pm) operations, where P is the num-
ber of discrete point in the computational domain, Since P
is typically large, even the O(m?) implementation of (2.8)
may be advantageous. Using the fast Fourier transform to
perform the convolution in (2.8) reduces the operation
count for the prediction procedure to O{mlogm) which
makes this procedure very competitive, especially when the
numerical experiment is based on a method that requires a
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large amount of computation for a single step as 1s often the
case for implicit schemes.

The prediction procedure also has the particular advan-
tage that when the response at a small number of points in
space and time are needed, the computation of the response
at other points is not a necessary intermediate step. For
example, obtaining the long-time harmonic response in the
near field requires no computation of values for short times
or in the far field. These advantages of the prediction
procedure suggests that it should find many applications.

Finally, we observe that the finite-difference method and
the associated discrete radiation boundary condition (see
Section I1T) produce errors in the v¥. The former produces
numerical dispersion which is sensative to the high-
frequency content of the Kronecker function while the latter
is sensitive to its low-frequency content. (Here the frequency
content is measured with respect to the size of the grid.) The
same errors would also be present in a direct finite-
difference simulation of a scattering problem for a smooth
incident puise. Thus, our method is only as good as the
underlying difference scheme and its associated radiation
boundary condition in resolving both the high-frequency
and low-frequency contents of a given incident pulse. If one
knew a priori the class of incident pulses that were to be
used in scattering experiments, then a mesh size and the
position of the radiation boundary condition could be
determined to ensure that our method produced accurate
results.

HI. NUMERICAL EXPERIMENTS

In this section, numerical experiments that illustrate
and confirm the theorctical results of earlier sections are
presented. A numerical simulation of the problem given in
(2.1) for a sound-soft circular cylinder is conducted for a
collection of incident pulse profiles. The performance of the
prediction procedure (2.8) is evaluated for each of these
experiments. No error in the predicted scattered waves is
detected in these experiments up to seven significant figures.
Similar results for a Helmholtz-like resonator indicate the
applicability of our method is not restricted to simple
scatterers.

The Numerical Method

We use a finite-difference scheme to approximate solu-
tions of (2.1). The surface of the target .S is a circle with
radius one. The scheme implemented is the standard explicit
centered-difference scheme in polar coordinates which is
mildly dispersive. Furthermore, we make use of an artificial
nonreflecting boundary at a radius R from the center of the
circular target. This boundary [6] is nonreflecting only to
first order and produces an error of O(1/R?). The finite-
difference scheme is second-order accurate. That the
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approximate solutions of (2.1) bear some marks of the
deficiencies of the numerical method is of little concern to us
as we are interested in the prediction of one numerical
experiment from another, not in the quality of the
experiments. In fact, the ability of the prediction procedure
to resolve these numerical artifacts is an additional
demonstration of its power.

Unless otherwise noted the numerical experiments use a
target radius of 1, an artificial nonreflecting boundary at a
radius of R=20, 190 grid points in the radial direction,
32 grid points in the angular direction, a time step
of 0.02, and a total of 2500 time steps. The computations
are performed using double-precision arithmetic in a
C language program. The results of the numerical
scattering experiments are recorded in decimal format with
16 significant figures.

The output recorded in the experiment was not the field
values v!™ but rather a numerical approximation of the nor-
mal derivative of the field values on the surface of the target.
In principle, this information is sufficient to reconstruct the

-output field values. Because the normal derivative is linearly

related to the field values the prediction formula (2.7) still
applies. Thus, in this section v" denotes the normal
derivative of the field on the surface of the target because
this quantity plays the same role (the output of the
numerical experiment) as the field values did in the earlier
sections.

The Incident Pulses

The incident pulse profiles in the tests are the Kronecker
function, two unmodulated gaussian profiles, two stepped-
sine profiles, and two modulated gaussian profiles. A
designation, a description, and an explicit formula for the
sampled values are given for each pulse profile in Table I.

Figure 3.1 presents plots of the various incident pulse
profiles. We note that the maximum value of the amplitude
for each pulse is one.

The Response to a Kronecker Function

We first examine the response to the Kronecker function.
We examine this response and the responses to most of the

TABLE1

Puise Profiles for the Numerical Experiments

Designation Description Formula

(K1)
{G1)
(G2)
(81)

Kronecker function
Fat guassian

Thin gaussian

Slow stepped-sine

wo=1,n,=0(/z1)
wy=exp( —(1/50 —4)*)
w = exp( — ({125 — 4)?)
w,=sin({/50)

(82)  Fast stepped-sine w, = sin{3nf/50)
(M1} Slow modulated gaussian  w,=exp{ —{//50 — 4)%) sin{//10)
{M2) Fast modulated gaussian  w,=exp(— (/50 — 4)°) sin({/50})
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FIG. 3.1. Incident pulse profiles for numerical experiments.

other pulses only at the front of the target. Nonetheless, the
observations we make reguarding this response apply
uniformly to all points around the target, There is no dis-
cernible degradation of the predicon method at the rear of
the target. Except to illustrate this point, we limit discussion
to the front of the target only to make the presentation as
concise as possible,

The response to a preconditioned Kronecker function
computed using the numerical method described above is
shown in Fig. 3.2a and 3.2b. Elements of this response are
unphysical in the sense that the Kronecker function strongly
excites frequencies not well resolved on the grid. Grid refine-
ment does not suppress these features because the duration
of the Kronecker pulse is defined to be one time step. The
CFL condition limits refinement of the spatial grid. Thus,
the calculated response to a Kronecker pulse is expected to
contain numerical artifacts due to grid dispersion and
imperfections in the nonreflecting boundary conditions.
Nonetheless, these numerical artifacts are of little concern
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because we do not use the response to the Kronecker func-
tion as a model of the physical response to a delta function.
Rather our goal is to use the response to a Kronecker func-
tion as an intermediate step in predicting the numerical
response to other pulses. Because grid dispersion affects
higher frequencies most strongly, most numerical artifacts
are removed when the response to the Kronecker function
is convolved with a incident pulse profile whose spectral
content is mostly in the low-frequency range.

Predicting the Response to a Secondary Incident Profile

The chief result of the numerical tests is that no difference
between the predictions and the finite-differénce-based
numerical experiments is evident to seven significant figures,
Thus, the predicted and usual responses shown in the
figures of this section are in fact the same curve. This
essentially perfect prediction holds uniformly at the various
grid points around the target.

Figures 3.3 and 3.4 show the response to the two gaussian
pulses {G1) and (G2).. There is no discernible difference
between the numerically computed response and that
predicted from the response to the Kronecker function.
Indeed, even the small reflection from the artifical boundary
at R=20 is accurately predicted. Thus, our method can
extract the physically meaningful low-frequence response of
the system at long times in spite of numerical artifacts of the
underlying numerical method.

Figures 3.5 and 3.6 show the response to the two stepped-
sine pulses (S1) and (82). Again the prediction of the
numerical experiment is perfect. Thus, the prediction proce-
dure can predict the harmonic response for a broad range of
frequencies from a single numerical experiment, as well as
the underlying numerical method allows. The ability to
predict the long-term behavior after the transients decay is
of particular interest.

0.50 1 T T T
025 4

¢.00 ,.I-, L J lll,

-0325 _

Normgl derivative ot the front of the target

Time Step

FIG. 3.2. Response to the Kronecker function (K 1): {a) short-time: (b} long-time.
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FIG. 39. Predicted and actual response in the shadow for M2.
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FIG. 3.11. A Helmholtz-like resonator.

Figures 3.7 and 3.8 show the response to the modulated
gaussian pulses (M1) and (M2). The modulated gaussian
pulses are perhaps the most sever test of the prediction
method because they contain two widely separated scales
(the period of the modulating sine function and the width of
the gaussian envelope). Nonetheless, the prediction method
performs without error to seven significant figures including
resolving the reflection from the artificial boundary.

Figure 3.9 shows the response to (M2) at the rear of the
target. In the shadow region the prediction method is still
essentially perfect. This result says that the prediction
method anticipates the results of a numerical experiment
perfectly. It does not imply that quality of the numerical
experiment is the same at the front and rear of the target.

Figure 3.10 shows the response to (M2) at the front of a
Helmholtz-like resonator. Again no difference between the
prediction and the numerical response is found. This
resonator consists of the cylinder used in the earlier
experiments surrounded by a slit-cylinder of radius two (see
Fig. 3.11). The slit spans an arc of 45° beginning at the front
of the target. This asymmetric resonator produces 2
respons¢ considerably more prolonged and complicated
than that for a simple cylinder. The quality of the prediction
suggests the general applicability of the methed to
complicated scatterers, including those consisting of
inhomogeneous penetrable materials.

1V. CONCLUSIONS

We have presented a new method which approximately
determines the scattering of a scalar wave off an
impenetrable target and have given numerical examples for
a sound-soft object. The method is a discrete analog of a
familiar convolution result for linear systems in which the
kernel contains all the physical information about the scat-
terer. We deduce an algorithm for approximating this kernel
and we determine an explicit solution to it by running a
single scattering experiment. Specifically, we use an explicit
finite-difference scheme {other methods can also be used) to
determine the discrete field produced by an incident
Kronecker pulse and this field is used to determine an
approximate kernel. To determine a numerical approxima-
tion of the scattered field for a given incident pulse we
simply apply our discrete convolution formula using the
incident pulse and the approximate kernei.

We observe that our method faithfully produces the same
errors in the scattered fields as would a direct application of
the explicit finite-difference scheme. The errors introduced
by using the finite-difference scheme to compute the
response of the incident Kronecker pulse seem to propagate
their way through the convolution formula to do this. These
errors come about from the discretization of the underlying
equations and boundary conditions, and the application of
a radiation boundary condition at a finite radius. They can
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be reduced by more refined spatial discretization and by
either larger computational domains or higher order
boundary operators, respectively. The former would require
prohibitively small temporal steps for the explicit method
used in this paper. If very low errors are required from a
numerical simulation, then the above arguments suggests
that an implicit scheme would be used to solve the
scattering problem with the incident Kronecker pulse. Our
method would then produce a truly economical means by
which to accurately solve other scattering problems.

Finally, we observe that our method can be extended in
principle to solve scattering problems from penetrable
targets. That is, scatterers whose physical properties are
inhomogeneous. This extension is the subject of ongoing
research activities.

APPENDIX A

In this appendix we derive (2.2) which characterizes the
class of linear, time invariant, causal numerical methods for
solving (2.1) considered in Section I and I1I. According to
(2.1d) the scattered waved v is driven by the values of the
incident profile on the surface of the target. Thus, we expect
that the numerical estimate of the scattered wave ¢! is a
linear function of the discretely sampled incident waves
U(X,+ mh). The most general linear function of this kind
has the form

N o

U!'m)= Z z ﬁimp.fU(Xp_"lh)'

p=1 I= —=

(Al)

That is, the linear function is completely characterized by
the constants §,,,.,-

That the numerical method is time invariant means that
if the incident waves is delayed (shifted in time) by L time
steps then the response is also delayed by L steps. Thus,

!

N o]
o =Y ¥ BupUX,+h—Lh). (A2a)
p=1I=—o

KRIEGSMANN AND LUKE

Shifting the dummy index / and the discrete time m, (A2a)
may be rewritten as

N o
b =Y Y Bums e U, + ). (A2Db)
p=14 I=—-w
which implies that
ﬁl‘m+Lp+L=B!mpl (A3)

for all values L. This result says that 8,,.,, depends on / and
m only through their difference m — /. That is, there exist
constants K%' such that f,,,,=K{"~". Substituting this
result into (A1) yields

KO=0U(X, + mh). (Ad)

Causality requires that v!™ depends only on the nonzero
portion of the incident wave reaching the target up to the
mth time step. Thus, the inner sum in (A4) can be restricted
to run from /=0 to /=m, giving (2.2).
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